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We study the nonequilibrium dynamics in a mesoscopic graphene ring excited by picoseconds shaped
electromagnetic pulses. We predict an ultrafast buildup of charge polarization, currents, and orbital magneti-
zation. Applying the light pulses identified here, nonequilibrium valley currents are generated in a graphene
ring threaded by a stationary magnetic flux. We predict a finite graphene ring magnetization even for a
vanishing charge current; the magnetization emerges due to the light-induced difference of the valley
populations.
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Introduction. Since the recent fabrication of graphene, a
monolayer of carbon, a number of fascinating phenomena
have been uncovered, mostly owing to the quasirelativistic
behavior of the carriers and their high mobility.1–5 Two
�-bonded interpenetrating triangular sublattices, A and B,
build the graphene honeycomb lattice. The � and �� bands
govern the electronic properties near the neutrality point and
result in conical valleys touching at the high symmetry
points K and K� of the Brillouin zone �BZ�. Near K and K�,
the energy dispersion is linear and the electronic properties
are well-described by the effective Dirac-Weyl Hamiltonian
H0.2–4,6 The stationary states are degenerate in the spin S and
the valley quantum numbers �= �1. The latter correspond to
the two nonequivalent K points in BZ. Due to the suppressed
intervalley scattering, the control of � eigenstates may be
utilized for electronic7,8 and optoelectronic applications.9

Interesting physical effects emerge due to confinement. E.g.,
in a mesoscopic graphene rings pierced by a magnetic flux,
the ring confinement breaks the valley degeneracy and re-
sults in the persistent current.10 Experimentally, such
graphene rings were fabricated and the Aharonov-Bohm
effect was observed.11

While a large body of work has been devoted to various
equilibrium electronic and optical properties, the nonequilib-
rium time-dependent phenomena in graphene are much less
explored.12,13 The present Brief Report presents a study on
the nonequilibrium dynamics in graphene rings driven by
asymmetric monocycle electromagnetic pulses. Charge po-
larization and current carrying states build up within picosec-
onds and are tunable by the parameters of the driving field.
The states may become valley polarized resulting in a non-
equilibrium valley currents. The valley population together
with the charge current determines the magnetization of the
ring.

Stationary states. We consider a graphene ring10 of radius
r0 and width W �cf. Figure 2�a�� threaded by a magnetic flux
of a strength �. As in Refs. 10, 14, and 15, the Dirac elec-
trons are confined to the ring by the potential �V�r��z at the
boundaries, as resulting, e.g., from a substrate potential.16,17

The polar-coordinates ring Hamiltonian is18

H = − i�v��r�r + ��

1

r
��� + i�̃�� + �V�r��z, �1�

where �r=�� ·e�r and ��=�� ·e�� with e�r and e�� being the basis
vectors of the polar-coordinate system, and �z is the Pauli

matrix expressed in the pseudospin states of the two sublat-

tices. v=106 m /s is the Fermi velocity, and �̃=� /�0,
where �0 is the flux quantum. The eigenstates of H and Jz
�the z component of the total angular momentum with eigen-
values m� are

	m�r,�� = R+�r�ei�m−1/2��
+ + R−�r�ei�m+1/2��
−, �2�

where m= �1 /2, �3 /2, . . . and �z
�= �1 /2
�. The gen-
eral form for the radial parts is R+�r�=c1Hm̄−1/2

�1� �r̃�
+c2Hm̄−1/2

�2� �r̃� and R−�r�= is�c1Hm̄+1/2
�1� �r̃�+c2Hm̄+1/2

�2� �r̃��, where
r̃=r�E� /v is a normalized radial coordinate, Hm

�1���2�� is
the Hankel function of the first �second� kind, s=sgn�E�
selects the solution of the positive or the negative energy

branch, and m̄=m+�̃. The boundary conditions and the
normalization fix the coefficients c1 and c2. For V�r�=0 if
r� �r0−W /2,r0+W /2�, and V�r�→+� outside the ring10 we
find 	= ����	 at r=r0�W /2. With this, Eq. �2� can be
solved numerically or for W /r0�1 analytically,10 yielding
the spectrum

Enm
s� = sn + s�n�m + �̃eff

s�n�2 −
s�n

4�2�n + 1/2�2 , �3�

n =
�v
W

�n + 1/2�, �n =
�v
W
�W

r0
	2 1

��2n + 1�
. �4�

n=0,1 ,2 , . . ., and �̃eff
s�n=�̃−s� / ��2n+1���. For fixed s ,�,

and n the quantity �̃eff
s�n modifies the energy spectrum as an

effective �normalized� magnetic flux. The shift in the effec-

tive magnetic flux from �̃ has a different sign depending on
the valley ��= �1�. For W /r0�1, we find

R+,n
s� �r� =

1

Wr0

cos��n + 1/2��r̃� −
�

4
�� , �5�

R−,n
s� �r� =

is


Wr0

sin��n + 1/2��r̃� −
�

4
�� , �6�

where r̃�= �r−r0+ W
2 � /W� �0,1�. For applications involving

tunneling from the ring, it is important to inspect the case of
a finite barrier boundary, i.e., V=V0 for r outside of the ring.
To a first order of ���v / �WV��1 we find that Eq. �4�
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applies with n being replaced by �1−��n and �n by �1
+���n. For W=0.1 �m, the condition ��1 means V
�7 meV. Hence, our theory developed below is valid also
for a finite barrier graphene ring. In a particular example of
the boron nitride substrate we have V=53 meV �Ref. 19�
and therefore �=0.13. Having specified the stationary single-
particle states we proceed with the nonequilibrium
calculations.20

Pulse-induced polarization. To drive the nonequilibrium
states in graphene rings, we utilize asymmetric monocycle
pulses, so-called half-cycle pulses �HCPs�.21,22 For pulse du-
ration �p shorter than the carriers characteristic time scale,23

the impulsive approximation �IA� applies, meaning that the
time-dependent carrier wave function ��r ,� ; t� propagates
stroboscopically as24

��r,�;t+� = ��r,�;t−�ei�� e�r;

�� =
r0p�

�
, p� = e� F� �t�dt , �7�

where t− and t+ refer to times before and after the application
of the pulse and �� is the action delivered to a ring carrier of
charge e by the HCP electric field F�t�. The pulse triggers a
time-dependent carrier density distribution which depends on
�= �1, i.e., it is different for the two valleys. As a physical
consequence, a time-dependent charge dipole moment is cre-
ated in the ring. For the post-pulse dipole moment �m0

�0 �t�
associated with a carrier starting from the stationary state �
=�0 and m=m0 we find25

�m0

�0 �t� = er0�h���sin
t

t0
cos�2�m0 + �eff

�0 �
t

t0
� , �8�

where t0=� /�0, h���=J0���+J2���, Jl�x� denotes the
Bessel function of the order l, and �=�
2�1−cos�2t / t0��.
The total electric dipole created in the ring for a fixed �, spin
value S, and t�0 is ���t�=mfm

� �m
� �t�, where fm

� is the equi-
librium distribution function. For N� carriers in a given val-
ley � at zero temperature T=0 we carried out the summation
over m analytically. For an arbitrary even or odd N� we find,
respectively,

�even
� �t� = er0�h���cos�2t

t0
���̃eff

� � −
1

2
	�sin

N�t

t0
,

�odd
� �t� = er0�h���cos�2t

t0
�̃eff

� �sin
N�t

t0
. �9�

Both expressions apply for �̃eff
� =�̃−� /�� �−1 /2,1 /2�, out-

side of this interval �s��t� is determined from the periodicity

in �̃eff
� with a period 1. The total dipole moment ��t� de-

pends on the distribution of the carriers between the valleys

that in turn depends on the magnetic flux �̃. The spin degen-
eracy is also important. One can show that jumps in the
population of particular states take place only at the points

�̃=−1 /2,−1 /� ,−r ,0 ,r ,1 /� ,1 /2 for �̃ in the interval
�−1 /2,1 /2�, where we denote r=1 /2−1 /�. The dynamics
of the dipole moment for N=8 carriers is shown in Fig. 1 as

a function of the applied stationary magnetic flux for two
different excitation strengths �=1 and �=5, showing that
the ring electric dipole and hence the associated light emis-
sion are controllable by � and �. For r0=1 �m and HCPs
with a sine-square shape and a time duration of 0.5 ps, �
=1 corresponds to the peak value of electric field F
=26 V /cm.

Note, the boundary conditions break the effective time-
reversal symmetry10 making the states corresponding to dif-
ferent � but otherwise to the same quantum numbers nonde-
generate. The dynamics of the charge polarization for
confined carriers is, however, the same in both � valleys for
�=0. This follows from the invariance of the states under

�→−�, and m→−m at �̃=0, as evidenced by Eq. �9�. This
degeneracy is lifted by applying a stationary magnetic flux

�̃�0. The density distribution of carriers in the ring be-
comes valley-polarized.

Nonequilibrium charge and valley currents. The electric
current density j�=ev	†�� 	 has the � component of the cur-
rent density

j��r� = − 2 Im�R+�r�R−
��r�� . �10�

The total charge current is I=�j�dr. To a zero order in
W /r0�1 we find I=0. Only higher order corrections in W /r0
give rise to a nonvanishing ring current. For the eigenstate
specified by s ,� ,n ,m the lowest order correction10 to the
current follows from Inm

s� =−�Enm
s� /�� using the energy spec-

trum in the considered limit.26 For n=0, s=1 this current is

equal to Im
� =−I0�m+�̃eff

� �, where I0= �e�vW / ��2r0
2�. For a
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FIG. 1. �Color online� Dependence of the dipole moment gen-
erated in the graphene ring on the time past after the excitation and

the normalized magnetic flux �̃=� /�0� �−1 /2,1 /2� �outside of

this range the periodicity by �̃→�̃+1 can be used� in the case of
8 carriers in the ring at T=0 for �a� �=1 and �b� �=5.
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ring with r0=1 �m and W=100 nm, we obtain I0
=0.16 nA, if r0=425 nm and W=150 nm as in Ref. 11, we
find I0=1 nA. In both cases, IA is valid if �p�3 ps. Such
HCPs are experimentally available.21 The total current in the
ring I is the sum of an equilibrium �persistent� current Ieq and
a nonequilibrium time-dependent current part Ineq�t� gener-
ated in the ring: I= Ieq+ Ineq�t�. The equilibrium part is given
by Ieq=m�fm�

� Im
� . For T=0, it is given in Ref. 10 for N

=1,2 ,3 ,4. We derive it for any N in n=0.
A nonequilibrium ring current is generated by a sequence

of two time-delayed mutually perpendicular HCPs �see Fig.
2�a��, similarly to the pulse-current generation in semicon-
ductor rings.27–30 This scheme allows for shorter excitation
times compared to the resonant excitation schemes using cir-
cular polarized pulses.30–33 At t=0, we apply linearly polar-
ized �along the x axis� pulse that creates a time-dependent
charge polarization along the x axis �cf. Figure 1�. The sec-
ond pulse is linearly polarized along the y axis and is applied
at t= ty. It generates a nonequilibrium current depending on
the charge polarization created by the first HCP. The delay
time should be short enough so that relaxation processes are
negligible in between the pulses. In the IA, the generated
nonequilibrium current reads

Ineq = �y
�x�ty�

er0
I0��t − ty� , �11�

where �y is the excitation strength of the second HCP and
�x�ty� is the dipole moment created by the first HCP just
before the application of the second HCP. Equation �11� de-
livers the total current as well as the individual currents in
each of the two valleys, in which case �x�ty� should be as-
sociated with the charge carriers in the respective valley. De-
fining the valley current as the difference between the cur-
rents flowing in two opposite valleys divided by the particle
charge, we find for the generated valley current

Ineq
v = �y

�x
+�ty� − �x

−�ty�
er0

I0

e
��t − ty� . �12�

On a longer time scale set by the relaxation processes, the
nonequilibrium current decays due to dissipation. Thereby
the incoherent electron-phonon scattering plays usually the
most important role.29,30 Specifically for a free-standing
graphene, scattering by flexural phonons is dominant at low
temperatures.34

An example of the dependence of the generated total
charge current on the delay time, ty is depicted in the upper
panel of Fig. 2�b�. The oscillating character of this depen-
dence is determined by the dynamics of the dipole moment
generated by the first HCP. The lower panel of Fig. 2�b�
demonstrates the dependence of the generated valley current
on the delay time ty. This current arises as a consequence of
the different contributions to the total dipole moment from
the two different valleys in presence of a static magnetic flux

�here, we used �̃=1 /�� at the time moment t= ty. Comparing
the upper and the lower panels, we conclude that tuning the
pulses delay may result in a vanishing total generated current
Ineq while the generated valley current Ineq

v is finite. It is also
possible to create Ineq�0 with Ineq

v =0. Under the conditions
of Fig. 2�b� the generated currents have the same order of
magnitude as the persistent currents. The nonequilibrium
contributions are enhanced, however, by increasing the HCPs
excitation strengths. An increase in the excitation strength �x
of the first HCP beyond the values around 1 does not lead,
however, to an increase of Ineq �Ineq

v � under the conditions
where Ineq

v �Ineq� vanishes because for this, certain delay
times are required. In the strong excitation regime, the non-
linear oscillations of the dipole moment collapse29 shortly
after the excitation �cf. Figures 1�a� and 1�b� in the range
t / t0� �0,2��. For a further increase in the currents under
these conditions, �y should be increased.

The ring charge current is associated with a magnetic di-
pole moment via M� =1 /2�r�� j�d2r�, i.e., M =��j�r2dr. From
Eqs. �10�, �5�, and �6�, we infer for the nonvanishing lowest
order of W /r0

M = �r0
2I + �r0

2I0
sn

4s

�2n + 1�2Qsn, �13�

where Qsn=Nsn
+ −Nsn

− is the difference in the valley popula-
tion for fixed s and n. For a vanishing total current in the ring
and s=1, n=0, Eq. �13� simplifies to M =4Q�r0

2I0. Note, the
valley polarized magnetic moment is also a generic feature
of the monolayer graphene with a broken inversion symme-
try �e.g., due to the action of the substrate potential�.8 The
difference in the valley population in Eq. �13� arises in equi-
librium for certain ranges of ��0. It can be also generated,
e.g., by injection of external nonequilibrium carriers to the
graphene ring, opening thus a way for an ultrafast detection
of the valley number. Finally, we note our results are valid
for weak pulses in which case a small angular population
around the ground state is created and many-body effects
remain subsidiary. Strong excitations go beyond the present
model and the influence of many-body interactions may de-
cisively alter the above predictions.
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FIG. 2. �Color online� �a� Current generation in the ring by
application of two HCPs polarized along mutually perpendicular
directions and delayed in respect to each other by the time ty. �b�
Upper and lower figures show the total current and the valley cur-
rent, respectively, generated in the graphene ring in dependence on
the delay time ty. Value of the magnetic flux is set to �=�0 /�,
number of carriers is N=8, excitation strengths of both HCPs are
equal to �=1. Arrows at ty =� / �4r0�t0 indicate the delay time for
which a valley current with no total charge current is generated
whereas for a delay time ty =� / �2r0�t0 a total charge current with
equal contributions from both valleys is generated.
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Conclusion. Short linearly polarized asymmetric light
pulses trigger a nonequilibrium carrier dynamics in graphene
rings threaded by a magnetic flux. The induced charge polar-
ization is detectable by monitoring the emitted radiation. De-
layed pulses with different polarization axes drive nonequi-
librium charge currents and hence an orbital magnetization.
For appropriate pulses, equal contributions from both valleys

are achievable as well as pure valley currents. The ring mag-
netization depends on the difference in the valley population.
The predicted effect is operational in presence of tunneling
allowing thus for swift injection or detection �via ring mag-
netization� of valley currents in coupled graphene structures,
e.g., wires, offering realization of ultrafast valleytronics
devices.
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